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Abstract. By introducing relative velocities of arbitrary number of cars ahead into the full velocity differ-
ence models (FVDM), we present a forward looking relative velocity model (FLRVM) of cooperative driving
control system. To our knowledge, the model is an improvement over the similar extension in the forward
looking optimal velocity models (FLOVM), because it is more reasonable and realistic in implement of
incorporating intelligent transportation system in traffic. Then the stability criterion is investigated by the
linear stability analysis with finding that new consideration theoretically lead to the improvement of the
stability of traffic flow, and the validity of our theoretical analysis is confirmed by direct simulations. In
addition, nonlinear analysis of the model shows that the three waves: triangular shock wave, soliton wave
and kink-antikink wave appear respectively in stable, metastable and unstable regions. These correspond
to the solutions of the Burgers equation, Korteweg-de Vries (KdV) equation and modified Korteweg-de
Vries (mKdV) equation.

PACS. 89.40.-a Transportation – 64.60.Cn Order-disorder transformations; statistical mechanics of
modelsystems – 02.60.Cb Numerical simulation; solution of equations – 05.70.Fh Phase transitions: general
studies

1 Introduction

Over the past decades, traffic flow problems have attracted
considerable attention in the field of physics [1–6], es-
pecially traffic congestion. To explain this phenomenon,
a lot of studies in the mathematical models have been
done in describing the dynamics of discrete groups of road
cars [7–11]. As one of such traffic models, the optimal ve-
locity model (OVM), which is proposed by Bando et al.
in 1995 [8], has successfully described the dynamical for-
mation of traffic congestion. In this model, each car is
described by a simple differential equation using the opti-
mal velocity function, which is determined on the headway
(the distance between the car position and the position of
the preceding car). Under a certain condition, OVM suc-
cessfully provides appearance of spontaneous transitions
from freely moving traffic to congested traffic, which has
been clarified by linear stability analysis. Moreover, per-
turbation methods had been adapted to analyze the traffic
wave of the OVM by Komatsu and Sasa [12]. They have
applied a modified Korteweg-de Vries (mKdV) equation to
a traffic jam which is described by a kink-antikink density
wave.

Although the OVM is shown to have a universal struc-
ture in describing many properties of traffic flow, many
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improvements have been done to make it fit real traf-
fic behavior. A calibration of the OVM with respect to
the empirical data shows that high acceleration and un-
realistic deceleration occur in the OVM, and Helbing and
Tilch [13] developed a generalized force model (GFM) with
a velocity difference term added into the OVM. The sim-
ulation results show that the GFM is in good agreement
with the empirical data. In 2001 Jiang et al. found out
that the GFM exhibited poor delay time of car motion
and kinematic wave speed at jam density and proposed a
full velocity difference model (FVDM) [14]. In this model
both positive and negative velocity difference are taken
into account, and the numerical investigations showed that
FVDM could described the phase transition of traffic flow
and estimate the evolution of traffic congestion.

From the viewpoint of economic value, the most im-
portant problem is to maximize the throughput of cars
on highways and prevent the traffic congestion. Based on
the fact that real-time reporting systems of vehicular in-
formation are now becoming widely available, in order to
aid emergency dispatch assistance and traffic control man-
agement as being an important part of intelligent trans-
portation systems (ITS), the study has been focused on
using the information of many other cars to suppress the
appearance of traffic congestion efficiently. In 2003 and
2004, Hasebe et al. [15,16] suggested a “forward look-
ing” optimal velocity model (FLOVM) applied to such
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a cooperative driving control system and Ge et al. [17] in-
vestigated dynamic behavior near the critical point of the
model. In their models, the optimal function is extended
to incorporate the effect from many cars in front by in-
troducing into the headway of arbitrary number of cars
ahead. They had verified that a certain set of parameters
exist in their models make traffic flow “most stable”.

However, there essentially exist some disadvantages in
performing such a cooperative driving control system run
by FLOVM in ITS environment. First of all, the precon-
dition of applying FLOVM to decide the traffic behavior
is that the position of all cars should be obtained accu-
rately. At present positioning services for civil users are
mostly provided by GPS, which is a satellite navigation
system funded and controlled by the US Department of
Defense (DOD). Unfortunately, the GPS data of the re-
ceiver have some errors, which consist of noise, bias, and
blunders. Although we can improve the accuracy of the
GPS signal regardless of the extra fee of cost, the accu-
mulative errors of positions of many cars ahead in FLOVM
will also lead to failure of our endeavor. Secondly, there
are always many cars entering or leaving from any loca-
tion of road network at any time in real traffic, it will
lead to some separations between successive cars varying
abruptly. Such situation will consumedly increase the pos-
sibility that driver conducts error operation for reacting
to the error information of others, and even further leads
to a sudden collision, which extensively decrease the feasi-
bility of suppressing traffic congestion for our purpose by
incorporating the ITS application.

But, do there exist other regulations for incorporating
the information of many cars ahead? And can other form
of extended model get rid of all above defects exist in the
FLOVM? Here we shall concentrate our attention on such
direction. As we know, the instantaneous velocity of each
car can accurately obtained by velocity indicator in car
based on ITS application environment. It is very realistic
and prospective that the stability of the traffic flow can be
enhanced further by use of such a data. In this paper, we
try to present a differential-difference equation of traffic
dynamics which extends the FVDM to take into account
the relative velocities of arbitrary number of ones ahead.
Since our model incorporates not only the relative veloc-
ity of the considered car but also the relative velocities
of many cars ahead of considered one, we call it forward
looking relative velocity model (FLRVM), which will be
proved to overcome the difficult cases described above.
Moreover, linear stability analysis shows that the model
is stabilized by taking into account the relative velocities
of many cars ahead. We will compare the analytical re-
sult with that from the numerical simulation. From the
nonlinear analysis, it is shown that three different traffic
waves appear in stable, unstable and metastable regions.

This paper is organized as follows: the previous car-
following models, including the OVM, the FVDM and
the FLOVM are reviewed in Section 2. In Section 3 and
Section 4 we introduce our dynamical equation for traffic
flow and the stability criterion of it is investigated in an
analytic method respectively. In Section 5 we analyse the

density wave for a traffic flow by means of the perturba-
tion methods in the three regions, stable, metastable and
unstable regions. The stability condition of traffic flow is
investigated by means of simulation; we shall see that the
proposed model works very well for our purpose by con-
ducting direction simulations in Section 6. Finally, conclu-
sions are summarized.

2 Previous car-following models

2.1 The optimal velocity model

In 1995, Bando et al. [8] have analyzed a traffic model
called the optimal velocity model (OVM), In the OVM,
the acceleration of the jth vehicle at time t is determined
by the difference between the actual velocity vj(t), and an
optimal velocity V (∆xj(t)), which depends on the head-
way ∆xj(t) to the car in the front:

dvj(t)
dt

= a[V (∆xj(t)) − vj(t)] (1)

where a is the sensitivity of a driver and is given by in-
verse of the delay time. The comparison with field data
suggests that the OVM encountered the problems of high
acceleration and unrealistic deceleration.

2.2 The full velocity difference model

By taking the velocity difference into account, Jiang
et al. [14] developed a full velocity difference model
(FVDM) based on the OVM. The traffic model described
by the following equation of motion of car j:

dvj(t)
dt

= a [V (∆xj(t)) − vj(t)] + k∆vj(t)

∆vj+l(t) = vj+l+1 − vj+l (2)

where k is a constant. Simulation results show that FVDM
does not appear unrealistically high acceleration which oc-
curs in the OVM. Moreover, this model can predicts cor-
rect delay time of car motion and kinematic wave speed
at jam density.

2.3 Forward looking optimal velocity model

With the fast development of the intelligent traffic sys-
tem (ITS), drivers can receive information of other cars
on roads, and some scholars suggest that it is possible
to improve the stability of traffic flow and suppress the
appearance of traffic jam in light of the information. In
2003, Hasebe, Nakayama, and Sugiyama presented the
forward looking optimal velocity model (FLOVM) [15],
which bases the idea that a driver looks at many vehi-
cles ahead of him/her. In 2004, H.X. Ge et al. suggest a
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kind of FLOVM [17], which is described by the following
differential equation:

dvj(t)
dt

= a[V

(
n∑

l=1

αl(∆xl+j(t))

)
− vj(t)] (3)

where αl is the weighted function of ∆xl+j(t). From
equation (3) we can observe that this model incorporating
an ITS by taking into account headways of n-cars ahead.
The FLOVM is verified to further stabilize traffic flow
than the single car consideration in the OVM. However, it
still has some problems in obtaining the accurate headway
under the ITS environment.

3 Forward looking relative velocity model

In incorporating multivehicle consideration in real traffic,
if we can accurately get the position of each car, the im-
plement of the FLOVM is reasonable and charming; oth-
erwise it will extensively affect our purpose to improve the
stability of traffic flow. This is the just reason why we find
out another means that applies to a cooperative driving
control system. Now, according to the idea mentioned in
the Introduction, we extend the FVDM by incorporating
the relative velocities of n-cars ahead, and then get a new
model, the forward looking relative velocity model. The
dynamical model of traffic is presented as follows,

dxj(t + τ)
dt

= V (∆xj(t),
n∑

l=0

αl∆vj+l(t))

αl =
(

1
5

)(l+1)

(4)

where αl is the weighted function of ∆vj+l(t), and
V (∆xj(t) ,

∑n
l=0 αl∆vj+l(t)) is the extended OV function

including variables of the headway and relative velocities.
The idea of the model is that a driver adjusts the car ve-
locity at time t according to the observed headway, and
the relative velocities of n cars ahead at time t−τ to reach
the optimal velocity, where τ is the delay time which is
the time lag before reaching the optimal velocity.

Assuming that the delay time τ is small, Taylor ex-
pansion both sides of equation (4) leads to,

dvj(t)
dt

= a

[
V (∆xj(t)) − dxj(t)

dt

]
+ k

n∑
l=0

αl∆vj+l(t) (5)

where we assume that the extended OV is V (∆xj(t),∑n
l=0 αl∆vj+l(t)) = V (∆xj(t)) + λ

∑n
l=0 αl∆vj+l(t), a is

the sensitivity of a driver to the observed headway ∆xj(t),
a = 1

τ ; k is the sensitivity of response to the stimulus∑n
l=0 αl∆vj+l(t) and is taken to be k = λ

τ . It is assumed
that λ is a constant independent of time, velocity and po-
sition, which is called the response factor to the sum of
relative velocities.

Generally, the optimal velocity function V (x) is a
monotonically increasing function and it has an upper

bound [18]. According to the original OVM, we will take
a hyperbolic tangent function as

V (∆xj(t)) = tanh(∆xj(t) − hc) + tanh(hc) (6)

where hc = 4.0 which gives the safe distance. In order to
deal with a more realistic traffic model, we can conduct
a calibration of all parameters of the model, but we will
not consider this here because we are interested in the
characteristic properties of our model.

It is convenient to rewrite equation (4) by using the
asymmetric forward difference, which is reformulated,

xj(t + 2τ) − xj(t + τ) = V (∆xj)τ

+ λ

{
n∑

l=0

αl[∆xj+l(t + τ) − ∆xj+l(t)]

}
. (7)

Now, we discuss the expression in the right side of
equation (5). Comparing with the FLOVM, FLRVM dif-
fers in the interaction term, where FLOVM extends the
original OVM with other car’s headway with some errors,
while FLRVM suggests extending car interaction by other
car’s relative velocity, which is equal to the instantaneous
velocity difference of the successive velocity. From this
point of view, FLRVM incorporates the ITS application
more exactly, which verifies that the new consideration in
our model is reasonable and realistic.

4 Linear stability analysis

Next we explore whether the proposed model can further
stabilize traffic flow similar to the FLOVM. We apply the
linear stability method to the extended model described
by equation (7). We consider the stability of uniform traf-
fic flow, which can be defined by such a state that all
cars move with the identical headway h and the optimal
velocity V (h), and it can be written as,

x
(0)
j (t) = V (b)t + jh, b = L/N (8)

where N is the total number of cars. When Ge et al. dis-
cussed their model, a restriction condition that the sum of
all the weighted function of headway introduced is equal
to 1 was imposed on the FLOVM in order to satisfy above
solution of steady state [17]. It consumedly constricts the
selection of the weighted function applied to the FLOVM.
But here we can observe that it is apparent that the fol-
lowing solution of steady state flow satisfies the dynamical
equation (7) with any form of the weighted function αl.
From this point, the FLRVM holds much more flexibility
than the FLOVM.

To see whether the solution (8) is stable or not, we add
a small disturbance yj(t),

xj(t) = x
(0)
j (t) + yj(t). (9)
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Then the linearized equation is obtained

yj(t + 2τ) = yj(t + τ) + V ′(h)τ∆yj

+ λ

{
n∑

l=0

αl[∆yj+l(t + τ) − ∆yj+l(t)]

}
. (10)

By expanding yj(t) = eikj+zt, the following equation of z
is obtained

(ezτ − 1)[ezτ − λ
n∑

l=0

αl(eik − 1)] = V ′(h)τ(eik − 1). (11)

The solution of equation (11) is:

z = z1(ik) + z2(ik)2 + ... (12)

The first- and second-order terms of ik are obtained,

z1 = V ′(h),

z2 =
V ′(h)

2
− 3[V ′(h)]2

2
+ λV ′(h)

n∑
l=0

αl. (13)

If z2 is a negative value, the uniformly steady-state flow
becomes unstable for long-wavelength modes, while the
uniform flow is stable when z2 is a positive value. Thus
the neutral stability criteria for this steady state are sum-
marized as follows:

V ′(h) <

1 + 2λ
n∑

l=0

αl

3τ
. (14)

Comparing the result with that of the original OVM [19],
we can conclude that the FLRVM is stabilized in the re-
gion

1
3τ

< V ′(h) <

1 + 2λ
n∑

l=0

αl

3τ

by the effect of velocity interactions of many cars ahead,
which means that by introducing the relative velocity of
many cars ahead into the original car-following model, the
traffic flow becomes more stable similar to that by taking
into account the headway of many cars ahead. It can also
be obtained that the more we consider the effects of the
relative velocities of cars ahead, the more stable the traffic
flow will be.

5 Nonlinear stability analysis

Vehicle density could fluctuate for various reasons to form
a density wave in traffic flow, which leads to the traffic
jams. Different nonlinear wave equations have been de-
rived to describe the corresponding density waves from a
great number of earlier models of car-following. In order to
examine this respect of our model, here we will investigate
the nonlinear dynamics of traffic jams. We will consider
the slowly varying behavior in the stable, the metastable

and the unstable region with the help of a small positive
scaling parameter ε.

In order to extract slow scales for the space variable
jand the time variable t [20,21], here we define the slow
variables X and T for 0 < ε ≤ 1 as follows,

X = εp(j + bt), T = εqt (15)

where b is a constant to be determined. Let

∆xj(t) = h + εmR(X, T ). (16)

In the expressions of equations (15, 16), m, p and q are
parameters which will be determined for following discus-
sion in the stable region [22], near the neutral stability
line [12] and in the unstable region [23].

We rewrite equation (7) as

∆xj(t + 2τ) − ∆xj(t + τ) = [V (∆xj+1) − V (∆xj)]τ

+ λ

{
n∑

l=0

αl[∆xj+l+1(t + τ) − ∆xj+l+1(t)

− ∆xj+l(t + τ) + ∆xj+l(t)]

}
. (17)

Substituting equations (15) and (16) into equation (17)
and making the Taylor expansions to the fifth order of ε,
we can obtain the following nonlinear partial differential
equation

εp+mbτ∂XR + εq+mτ∂T R + ε2p+m 3b2τ2

2
∂2

XR

+ ε2q+m 3τ2

2
∂2

T R + εp+q+m3bτ2∂T ∂XR

+ ε3p+m 7b3τ3

6
∂3

XR + ε2p+q+m 7b2τ3

2
∂T ∂2

XR

+ ε4p+m 15b4τ4

24
∂4

XR =

[
εp+mV ′(h)∂XR

+ ε2p+m V ′(h)
2

∂2
XR + ε3p+m V ′(h)

6
∂3

XR

+ ε4p+m V ′(h)
24

∂4
XR + εp+2m V ′′(h)

2
∂XR2

+ ε2p+2m V ′′(h)
4

∂2
XR2 + ε3p+2m V ′′(h)

24
∂3

XR2

+ εp+3m V ′′′(h)
6

∂XR3 + ε2p+3m V ′′′(h)
12

∂2
XR3

+ ε3p+3m V ′′′(h)
36

∂3
XR3

]
τ + λ

n∑
l=0

αl

[
ε2p+mbτ∂2

XR

+ εp+q+mτ∂T ∂XR + ε3p+m 3bτ(bτ + 2l + 1)
6

∂3
XR

+ε4p+m 4(bτ)3 + 6(bτ)2(2l + 1) + 4bτ(3l2 + 3l + 1)
24

∂4
XR

]

(18)

where ∂T = ∂
∂T

, ∂X = ∂
∂X

, ∂X∂T = ∂2

∂X∂T
,

V ′(∆x) = dV (∆x)
d∆x

∣∣∣
∆x=h

, and V ′(∆x) = dV 3(∆x)
d∆x3

∣∣∣
∆x=h

.
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5.1 Stable flow region

In the stable traffic flow the long-wave models is consid-
ered by taking p = 1, q = 2, and m = 1. Substituting the
values of these parameters into equation (18), one obtains
the following partial differential equation:

ε2[b−V ′(h)]∂XR+ε3

⎡
⎢⎢⎣∂T R +

⎧⎪⎪⎨
⎪⎪⎩

3V ′2(h)τ
2

−

(
1 + 2λ

n∑
l=0

αl

)
V ′(h)

2

⎫⎪⎪⎬
⎪⎪⎭ ∂2

XR − V ′′(h)R∂XR

⎤
⎥⎥⎦ = 0.

(19)

By taking b = V ′(h), the second order of ε is eliminated
from equation (19), which is

∂T R − V ′′(h)R∂XR =

⎡
⎢⎢⎣
(

1 + 2λ
n∑

l=0

αl

)
2

− 3V ′(h)τ
2

⎤
⎥⎥⎦V ′(h)∂2

XR. (20)

In accordance with criterion (14), the coefficients [(1 +
2λ
∑n

l=0 αl)/2 − 3V ′(h)τ/2] of the second derivatives are
positive values in the stable traffic region. Thus, in the
stable region, equation (20) is just the Burgers equation,
of which the solution is a train of N -shock waves and is
given by

R(X, T ) =
1

|V ′′(h)|T
[
X − 1

2
(ηj + ηj+1)

]
− 1

2 |V ′′(h)|T
× (ηj+1 − ηj) tanh

[
C1

4 |V ′′(h)|T (ηj+1 − ηj)(X − ξj)
]

.

(21)

Here C1 = (1 + 2λ
∑n

l=0 αl)V ′(h)/2 − 3V ′2(h)τ/2 and ηj

and ξj represent the coordinates of the intersection of the
slopes with the x axis and the coordinates of the shock
fronts respectively. According to equation (21), the trian-
gular shock wave in free flow propagates backward with
propagation velocity b. Moreover, we can observe that the
R(X, T ) → 0 when t → ∞, which means that the any den-
sity wave in free traffic flow will evolves to a homogeneous
flow in the course of time.

5.2 Unstable flow region

Next we investigate the nonlinear waves near the critical
point h = hc, which is a turning point (infection point)

with V ′′(hc) = 0. The turning point will help us to obtain
the kink-antikink density wave solution representing the
traffic jam.

By taking p = 1, q = 3 and m = 1, one obtains
the following nonlinear partial differential equation from
equation (18)

ε2[b − V ′(hc)]∂XR + ε3

[
3b2τ

2
∂2

XR − V ′(hc)
2

∂2
XR2

−V ′′(hc)
2

∂XR2 − λ

n∑
l=0

αlb∂
2
XR

]
+ ε4

[
∂T R +

7b3t2

6
∂3

XR

−V ′(hc)
6

∂3
XR − 3λ

n∑
l=0

αl
(1 + 2l + bτ)b

6
∂3

XR

−V ′′(hc)
4

∂2
XR2 +

V ′′′(hc)
6

∂XR3

]

+ ε5

[
3bτ∂T ∂XR +

15b4τ3

24
∂4

XR

−V ′(hc)
24

∂4
XR − V ′′(hc)

24
∂3

XR2 − V ′′′(h)
12

∂2
XR3

−
λ

n∑
l=0

αl[4b3τ2 + 6b2τ(2l + 1) + 4b(3l2 + 3l + 1)]

24

× ∂4
XR

]
= 0. (22)

We denote V ′ = V ′(h) and V ′′′ = V ′′′(hc). Near the criti-
cal point, τ = (1+ε2)τc, by taking b = V ′, and eliminating
the second- and third-order terms of ε, we can obtain a
simplified equation

ε4
[
∂T R − m1V

′∂3
XR + m2∂XR3

]
+ ε5 [m3 ∂2

XR + m4∂
2
XR3 −m5∂

4
XR
]

= 0 (23)

where

m1 =
9 − 7

(
1 + 2λ

n∑
l=0

αl

)2

+9λ
n∑

l=0

αl

(
4+6l+2λ

n∑
l=0

αl

)
54

V ′,

m2 = −V ′′′

6
, m3 =

(
1 + 2λ

n∑
l=0

αl

)
V ′

2
, m4 =

V ′′′

12

m5 =
9−5
(

1 + 2λ
n∑

l=0

αl

)3

216
+

λ

108

n∑
l=0

αl

⎡
⎣2
(
1+2λ

n∑
l=0

αl

)2

−9(2l + 1)

(
1 + 2λ

n∑
l=0

αl

)
+ 18(3l2 + 3l + 1)

]
. (24)

In order to derive the regularized equation, we make the
following transformations

T ′ = m1V
′T, R =

√
m1

m2
R′. (25)
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∆xj(t) = hc +

√√√√√−
18 − 14

(
1 + 2λ

n∑
l=0

αl

)2

+ 18λ
n∑

l=0

αl

(
4 + 6l + 2λ

n∑
l=0

αl

)
9V ′′′ cV ′

(
τ

τc
− 1

)
tanh

√
c

2

(
τ

τc
− 1

)

×

⎡
⎢⎢⎢⎣j +

⎛
⎜⎜⎜⎝1 −

9 − 7

(
1 + 2λ

n∑
l=0

αl

)2

+ 9λ
n∑

l=0

αl

(
4 + 6l + 2λ

n∑
l=0

αl

)
27

cV ′
(

τ

τc
− 1

)⎞⎟⎟⎟⎠ t

⎤
⎥⎥⎥⎦ . (27)

c =

135

(
1 + 2λ

n∑
l=0

αl

)

5 − 17λ
n∑

l=0

αl − 37

(
λ

n∑
l=0

αl

)2

− 12

(
λ

n∑
l=0

αl

)3

+ 135λ
n∑

l=0

αll + 54λ
n∑

l=0

αll2 − 9λ
n∑

l=0

αl(2l + 1)

(
1 + 2λ

n∑
l=0

αl

) .

ε3[b − V ′(h)]∂XR + ε4

[
3b2τ

2
∂2

XR − V ′(h)

2
∂2

XR2 − λ
n∑

l=0

αlb∂
2
XR

]
+ ε5

[
∂T R +

7b3t2

6
∂3

XR − V ′′(h)

2
∂XR2 − V ′(h)

6
∂3

XR

−3λ
n∑

l=0

αl
(1 + 2l + bτ )b

6
∂3

XR

]
+ε6

⎡
⎢⎢⎣3bτ∂T ∂XR +

15b4τ 3

24
∂4

XR − V ′′(h)

4
∂2

XR2 − λ
n∑

l=0

αl∂T ∂XR

−
λ

n∑
l=0

αl[4b3τ 2 + 6b2τ (2l + 1) + 4b(3l2 + 3l + 1)]

24
∂4

XR

⎤
⎥⎥⎦ = 0. (28)

Thus, we obtain the regularized mKdV equation with per-
turbed term:

∂T ′R′ − ∂3
XR′ + ∂XR′3 + ε

√
1

m1

[
m3∂

2
XR′

+
m1m4

m2
∂2

XR′3 − m5∂
4
XR′
]

= 0. (26)

Thus, one obtains the kink-antikink solution of the head-
way (V ′ = 1, V ′′′ = −2) from equation (26):

see equation (27) above

According to the general solution presented by Ge
et al. [24], we can obtain the selected value of propagation
velocity c for the kink-antikink solution (27) as follows,

see equation above

equation (26) shows that the kink-antikink density wave,
which is described by the solution of the mKdV equation,
appears near the critical point as the density wave in the
unstable region.

5.3 Metastable flow region

Next we consider the case of p = 1, q = 3 and m =
2, which will help us to obtain the following nonlinear
partial differential equation near the neutral stability from
equation (18).

see equation (28) above

Analogously, we denote V ′(h) = V ′ and V ′′(h) =
V ′′. Near the neutral stability line τs = (1 +
2λ
∑n

l=0 αl)/3V ′(h), τ = (1−ε2)τs. Taking b = V ′(h) and
eliminating the third- and fourth-order terms of ε from
equation (28) result in a simplified equation

ε4
[
∂T R − g1V

′∂3
XR + g2R∂XR

]
+ ε5
[
g3∂

2
XR − g4∂

2
XR2 − g5∂

4
XR
]

= 0 (29)

where

g1 =
9−7
(
1+2λ

n∑
l=0

αl

)2

+ 9λ
n∑

l=0

αl

(
4+6l +2λ

n∑
l=0

αl

)
54

V ′,

g2 = V ′′, g3 =

(
1 + 2λ

n∑
l=0

αl

)
V ′

2
, g4 =

V ′′

4

g5 =
9−5
(

1+2λ
n∑

l=0

αl

)3

216
+

λ

108

n∑
l=0

αl

⎡
⎣2
(
1+2λ

n∑
l=0

αl

)2

−9(2l + 1)

(
1 + 2λ

n∑
l=0

αl

)
+ 18(3l2 + 3l + 1)

]
.
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A =

42 + 252λ
n∑

l=0

αl + 126

(
λ

n∑
l=0

αl

)2

+

(
1134λ + 2268λ2

n∑
l=0

αl

)
n∑

l=0

αll − 420

(
λ

n∑
l=0

αl

)3

14 + 161λ
n∑

l=0

αl + 230

(
λ

n∑
l=0

αl

)2

+ 60

(
λ

n∑
l=0

αl

)3

+ 403λ
n∑

l=0

αll − 240λ
n∑

l=0

αll2 − 90λ
n∑

l=0

αl(2l + 1)

(
1 + 2λ

n∑
l=0

αl

) .

We conduct the following transformations

T =
√

g1T
′, X = −√

g1X
′, R =

1
g2

R′. (30)

Thus, we obtain the regularized KdV equation with per-
turbed term:

∂T ′R′ − ∂3
X′R′ + R′∂XR′

+ ε

√
1
g1

[
−g3∂

2
XR′ +

g5

g2
∂2

XR′2 +
g4

g1
∂4

XR′
]

= 0. (31)

We ignore the O(ε) term in equation (31), and obtain the
soliton solution of headway as the desired solution,

∆xj(t) = h +
A

V ′′

(
1 − t

ts

)
sech2

⎡
⎢⎢⎢⎢⎢⎣
√√√√√√

9A

4

[
1+4λ

n∑
l=0

αl+27λ
n∑

l=0

αll−5
(

λ
n∑

l=0

αl

)2
]

V ′
(1− t

ts
)

⎤
⎥⎥⎥⎥⎥⎦

×
{

j +
[
V ′ +

A

3

(
1 − t

ts

)]
t

}
. (32)

The selected value of amplitudeA for the KdV equation is
determined from the perturbation terms in equation (31)
as follows

see equation above

From above analysis from our model, we can observe that
three nonlinear wave equations is derived to describe the
corresponding density waves, among which the Burgers
equation, KdV equation and mKdV equation depict the
density waves appearing in the distinct regions, respec-
tively.

6 Simulation tests

To check the validity of our analysis above, we carry
out numerical simulation for our model described by
equations (6) and (7) under the periodic boundary con-
dition. The initial headway is chosen as follows:

∆xj(0) = ∆xj(1) = 4.0m, (j �= 50, 51) (33)
∆xj(0) = ∆xj(1) = 4.0 − 0.1, (j = 50) (34)
∆xj(0) = ∆xj(1) = 4.0 + 0.1, (j = 51) (35)

Fig. 1. The spatio-temporal evolution of the headway for (a)
n = 0,(b) n = 1, (c) n = 2, and (d) n = 3 respectively. (a = 2
and λ = 1).

where the total number of cars is 100. Figure 1 shows
the typical traffic patterns after a sufficiently long time
t = 104. The spatio-temporal evolution of the headway
for various number n of the relative velocities of cars in
front has different properties. The patterns (a), (b), (c),
and (d) show the time evolutions of the headway profile
according to the FLRVM for n = 0, 1, 2, 3, where a = 2
and λ = 1. The pattern (a) with n = 0 and the pattern (b)
with n = 1 correspond to that of the OVM and the FVDM
respectively. In the patterns (a), (b), and (c) the phase
transit from free flow to jammed traffic is observed and
the jams propagate backward as the kink-antikink den-
sity wave. Figure 2 shows the headway profile obtained at
sufficiently large time t = 104. With increasing number n
of the relative velocities of the cars ahead, the amplitude
of the density wave is weakened and initial small distur-
bances decay and initial traffic flow with a non-uniform
density profile evolves to a uniformly traffic flow which
is shown in pattern (d) if we set n = 3. Therefore, all
the results show that the effect of the relative velocities
of the cars ahead can stabilize the traffic flow just as the
FLOVM.

7 Summary

By introducing the relative velocities of the cars in front
into the FVDM, a forward looking relative velocities
model (FLRVM) is proposed to constructing a cooperative
driving system for highway traffic. The key improvement
upon the similar construction in FLOVM is that the
FLRVM incorporates other car’s relative velocity, which
can be obtained exactly in ITS environment. However,
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Fig. 2. The snapshots of headway configuration of all cars for
(a) n = 0,(b) n = 1, (c) n = 2, and (d) n = 3 respectively.
(a = 2 and λ = 1).

in the FLOVM, the same extension requires exact other
car’s position, which is obtained with various errors based
on existing skill at present. Then the stability criterion is
derived by the linear stability analysis. It has been shown
that similar to the FLOVM, the participation of other cars
ahead could efficiently suppressed traffic congestion in the
FLRVM, which has been verified by direct simulations.
In addition, the density wave for traffic flow has been
investigated according to the proposed model by the per-
turbation methods in the stable, unstable and metastable
regions. We have found that in the stable traffic region,
nonuniform density profile evolves to the uniform density
profile by the triangular shock wave, which can be
described by the Burgers equation or diffusion equation.
We have also found that with an increasing density of
traffic flow, the density wave, respectively, is described by

the KdV and mKdV equations in the regions of metasta-
bility and instability.

This work was supported by the key foundation project of
Shanghai (Grant No. 032912066).
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